D-Bus programming in Java 1.5

Matthew Johnson
dbus@matthew.ath.cx

March 16, 2011

Contents
1 Introduction 3
1.1 Protocol Implementation 3
1.2 Dependencies 3
1.3 D-Bus Terminology 3
1.3.1 BusNames 4
1.3.2 Interfaces 4
1.3.3 Object Paths 4
1.3.4 Member Names 4
1.3.5 Errors 4
2 DBusConnection 4
2.1 Asynchronous Calls o 5
3 DBuslnterface 6
3.1 Interface name overriding 6
4 DBusSignal 7
5 DBusExecutionException 8
6 DBusSigHandler 9
7 D-Bus Types 10
7.1 Basic Types o e 10
7.1.1 Unsigned Types o 10
7.2 Strings 10
7.2.1 String Comparisons 10
7.3 Arrays ... 11
T4 Maps 11
7.5 Variants 11
7.6 Structs L 11
7.7 Objects 12
7.8 Multiple Return Values L. 13

79 Fulllistof types 13

7.9.1 float 13

8 Annotations 15
9 DBusSerializable 15
10 Createlnterface 16
10.1 Nested Interfaces 16

11 Debugging 17
12 Peer to Peer 17
12.1 Connecting to another application 18
12.2 Getting Remote Objects 18

13 Low-level API 18
13.1 Transport 18
13.2 Message L 18
14 Examples 19
15 Credits 20

List of Figures

O 1 O O W N

NN — P R = =) === = O
— O © 00 1O Uik W= O

Calling an asynchronous method)
An interface which exposes two methods 6
A class providing a real implementation which can be exported 7
Overloading the name of an interface. 7
A Signal with one parameter 8
An Exception 9
Throwing An Exception 9

Catching An Exception 9
A Signal Handler oL 10
Comparing strings with java.text.Collator. 11
A Struct with three elements 12
A struct as a parameter to a method 12
A3-tuple 13
A Tuple being returned from a method 13
An annotated method 15
A serializable class 21
Listening for a peer connection 21
Connecting to a peer connection 22
Getting a remote object on a peer connection 22
Low-level usage 22
cx/ath/matthew/bluemon/Bluemon.java 22

22 cx/ath/matthew/bluemon/ProximitySignal.java 23

23 cx/ath/matthew/bluemon/Triplet.java 24
24 cx/ath/matthew/bluemon/Queryjava 25
25 cx/ath/matthew/bluemon/Client.java 26

List of Tables

1 Mapping between Java types and D-Bus types 14
2 Common Annotations 15

1 Introduction

This document describes how to use the Java implementation of D-Bus. D-Bus is an IPC
mechanism which at a low level uses message passing over Unix Sockets or IP. D-Bus
models its messages as either function calls on remote objects, or signals emitted from
them.

Java is an object-oriented language and this implementation attempts to match the
D-Bus IPC model to the Java object model. The implementation also make heavy use of
threads and exceptions. The programmer should be careful to take care of synchronisation
issues in their code. All method calls by remote programs on exported objects and
all signal handlers are run in new threads. Any calls on remote objects may throw
DBusExecutionException, which is a runtime exception and so the compiler will not
remind you to handle it.

The Java D-Bus API is also documented in the JavaDoc!, D-Bus is described in the
specification? and the API documentation?.

1.1 Protocol Implementation

This library is a native Java implementation of the D-Bus protocol and not a wrapper
around the C reference implementation.

1.2 Dependencies

This library requires Java 1.5-compatible VM and compiler (either Sun, or ecj+jamvm
with classpath-generics newer than 0.19) and the unix socket, debug and hexdump li-
braries from http://www.matthew.ath.cx/projects/java/.

1.3 D-Bus Terminology

D-Bus has several notions which are exposed to the users of the Java implementation.

'http://dbus.freedesktop.org/doc/dbus-java/api/
Zhttp://dbus.freedesktop.org/doc/dbus-specification.html
3http://dbus.freedesktop.org/doc/api/html/

http://www.matthew.ath.cx/projects/java/
http://dbus.freedesktop.org/doc/dbus-java/api/

1.3.1 Bus Names

Programs on the bus are issued a unique identifier by the bus. This is guaranteed to be
unique within one run of the bus, but is assigned sequentially to each new connection.

There are also so called well-known bus names which a device can request on the bus.
These are of the form “org.freedesktop. DBus”, and any program can request them if they
are not already owned.

1.3.2 Interfaces

All method calls and signals are specified using an interface, similar to those in Java.
When executing a method or sending a signal you specify the interface the method belongs
to. These are of the form “org.freedesktop. DBus”.

1.3.3 Object Paths

A program may expose more than one object which implements an interface. Object
paths of the form “/org/freedesktop/DBus” are used to distinguish objects.

1.3.4 Member Names

Methods and Signals have names which identify them within an interface. D-Bus does
not support method overloading, only one method or signal should exist with each name.
1.3.5 Errors

A reply to any message may be an error condition. In which case you reply with an error
message which has a name of the form “org.freedesktop. DBus. Error.Service Unknown”.

2 DBusConnection

The DBusConnection? class provides methods for connecting to the bus, exporting ob-
jects, sending signals and getting references to remote objects.

DBusConnection is a singleton class, multiple calls to getConnection will return the
same bus connection.

conn = DBusConnection.getConnection(DBusConnection.SESSION);
This creates a connection to the session bus, or returns the existing connection.

conn.addSigHandler (TestSignalInterface.TestSignal.class,
new SignalHandler());

This sets up a signal handler for the given signal type. SignalHandler.handle will
be called in a new thread with an instance of TestSignallnterface.TestSignal when that
signal is recieved.

‘http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/DBusConnection.
html

http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/DBusConnection.html
http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/DBusConnection.html

conn.sendSignal (new TestSignalInterface.TestSignal(
"/foo/bar/com/Wibble",
lIBarll ,
new UInt32(42)));

This sends a signal of type TestSignallnterface.TestSignal, from the object
“/foo/bar/com/Wibble” with the arguments “Bar” and UInt32(42).

conn.exportObject ("/Test", new testclass());
This exports the testclass object on the path “/Test”

Introspectable intro = (Introspectable) conn.getRemoteObject(
"foo.bar.Test", "/Test",
Introspectable.class);

This gets a reference to the “/Test” object on the process with the name “foo.bar. Test”
. The object implements the Introspectable interface, and calls may be made to meth-
ods in that interface as if it was a local object.

String data = intro.Introspect();

The Runtime Exception DBusExecutionException may be thrown by any remote
method if any part of the execution fails.

2.1 Asynchronous Calls

Calling a method on a remote object is synchronous, that is the thread will block until
it has a reply. If you do not want to block you can use an asynchronous call.
There are two ways of making asynchronous calls. You can either call the callMethodAsync
function on the connection object, in which case you are returned a DBusAsyncReply® ob-
ject which can be used to check for a reply and get the return value. This is demonstrated
in figure 1.

DBusAsyncReply<Boolean> stuffreply =
conn.callMethodAsync(remoteObject, "methodname", argl, arg2);

if (stuffreply.hasReply()) {
Boolean b = stuffreply.getReply();

Figure 1: Calling an asynchronous method

Alternatively, you can register a callback with the connection using the callWithCallback
function on the connection object. In this case, your callback class (implementing the
CallbackHandler® interface will be called when the reply is returned from the bus.

Shttp://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/DBusAsyncReply.
html

Shttp://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/
CallbackHandler.html

http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/DBusAsyncReply.html
http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/DBusAsyncReply.html
http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/CallbackHandler.html
http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/CallbackHandler.html

3 DBuslInterface

To call methods or expose methods on D-Bus you need to define them with their exact
signature in a Java interface. The full name of this interface must be the same as the
D-Bus interface they represent. In addition, D-Bus interface names must contain at
least one period. This means that DBusInterfaces cannot be declared without being in a
package.

For example, if I want to expose methods on the interface “org.freedesktop. DBus” 1
would define a Java interface in the package org.freedesktop called DBus. This would
be in the file org/freedesktop/DBus. java as normal. Any object wanting to export
these methods would implement org.freedesktop.DBus.

Any interfaces which can be exported over D-Bus must extend DBusInterface’. A
class may implement more than one exportable interface, all public methods declared in
an interface which extend DBusInterface will be exported.

A sample interface definition is given in figure 2, and a class which implements it in
figure 3. More complicated definitions can be seen in the test classes®.

All method calls by other programs on objects you export over D-Bus are executed
in their own thread.

DBusInterface itself specifies one method boolean isRemote(). If this is executed
on a remote object it will always return true. Local objects implementing a remote
interface must implement this method to return false.

package org.freedesktop;
import org.freedesktop.dbus.UInt32;
import org.freedesktop.dbus.DBusInterface;

public interface DBus extends DBusInterface

{
public boolean NameHasOwner (String name);
public UInt32 RequestName(String name, UInt32 flags);

Figure 2: An interface which exposes two methods

3.1 Interface name overriding

It is highly recommended that the Java interface and package name match the D-Bus in-
terface. However, if, for some reason, this is not possible then the name can be overridden
by use of an Annotation.

"http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/DBusInterface.
html

8http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/test/
TestRemoteInterface2. java http://dbus.freedesktop.org/doc/dbus-java/api/org/
freedesktop/dbus/test/TestRemoteInterface. java

http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/DBusInterface.html
http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/DBusInterface.html
http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/test/TestRemoteInterface2.java
http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/test/TestRemoteInterface2.java
http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/test/TestRemoteInterface.java
http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/test/TestRemoteInterface.java

package my.real.implementation;
import org.freedesktop.dbus.DBus;
import org.freedesktop.dbus.UInt32;

public class DBusImpl implements DBus

{
Vector<String> names;
public boolean NameHasOwner (String name)
{
if (names.contains(name)) return true;
else return false;
}
public UInt32 RequestName(String name, UInt32 flags)
{
names.add (name) ;
return new UInt32(0);
}
public boolean isRemote() { return false; }
}

Figure 3: A class providing a real implementation which can be exported

To override the Java interface name you should add an annotation to the interface of
DBusInterfaceName’ with a value of the desired D-Bus interface name. An example of
this can be seen in figure 4.

package my.package;
import org.freedesktop.dbus.DBusInterface;
import org.freedesktop.dbus.DBusInterfaceName;

@DBusInterfaceName ("my.otherpackage.Remote")
public interface Remote extends DBuslInterface

{

Figure 4: Overloading the name of an interface.

If you have signals which are declared in a renamed interface (see below for signals)
then when adding a signal handler you must use an addSigHandler method which takes

a class object corresponding to that signal. If you do not then receiving the signal will
fail.

http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/
DBusInterfaceName.html

http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/DBusInterfaceName.html
http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/DBusInterfaceName.html

4 DBusSignal

Signals are also declared as part of an interface. The Java API models these as inner
classes within an interface. The containing interface must extend DBusInterface, and
the inner classes representing the signals must extend DBusSignall®. The Signal name is
derived from the name of this inner class, and the interface from its containing interface.

Signals can take parameters as methods can (although they cannot return anything).
For the reflection to work, a Signal declare a single constructor of the correct type. The
constructor must take the object path they are being emitted from as their first (String)
argument, followed by the other parameters in order. They must also call the superclass
constructor with the same parameters. A full definition of a signal can be seen in figure 5.
Again, more complicated definitions are available in the test classes't.

package org.freedesktop;

import org.freedesktop.dbus.DBusInterface;

import org.freedesktop.dbus.DBusSignal;

import org.freedesktop.dbus.exceptions.DBusException;

public interface DBus extends DBusInterface

{
public class NameAcquired extends DBusSignal
{
public final String name;
public NameAcquired(String path, String name)
throws DBusException
{
super (path, name);
this.name = name;
+
X
+

Figure 5: A Signal with one parameter

5 DBusExecutionException

If you wish to report an error condition in a method call you can throw an instance of
DBusExecutionException!?. This will be sent back to the caller as an error message,
and the error name is taken from the class name of the exception. For example, if you

Ohttp://dbus. freedesktop.org/doc/dbus- java/api/org/freedesktop/dbus/DBusSignal.html

Uhttp://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/test/
TestSignalInterface.html

2http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/
DBusExecutionException.html

http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/DBusSignal.html
http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/test/TestSignalInterface.html
http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/test/TestSignalInterface.html
http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/DBusExecutionException.html
http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/DBusExecutionException.html

wanted to report an unknown method you would define an exception as in figure 6 and
then throw it in your method as in figure 7.

package org.freedesktop.DBus.Error;
import org.freedesktop.dbus.exceptions.DBuskExecutionException;

public class UnknownMethod extends DBusExecutionException

{
public UnknownMethod(String message)
{

super (message) ;

Figure 6: An Exception

public void throwme() throws org.freedesktop.DBus.Error.UnknownMethod
{

throw new org.freedesktop.DBus.Error.UnknownMethod("hi");

Figure 7: Throwing An Exception

If you are calling a remote method and you want to handle such an error you can
simply catch the exception as in figure 8.

try {
remote.throwme() ;
} catch (org.freedesktop.DBus.Error.UnknownMethod UM) {

}

Figure 8: Catching An Exception

6 DBusSigHandler

To handle incoming signals from other programs on the Bus you must register a signal
handler. This must implement DBusSigHandler!® and provide an implementation for

13http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/DBusSigHandler.
html

http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/DBusSigHandler.html
http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/DBusSigHandler.html

the handle method. An example Signal Handler is in figure 9. Signal handlers should be
parameterised with the signal they are handling. If you want a signal handler to handle
multiple signals you can leave out the parameterisation and use instanceof to check the
type of signal you are handling. Signal handlers will be run in their own thread.

import org.freedesktop.dbus.DBusSignal;
import org.freedesktop.dbus.DBusSigHandler;

public class Handler extends DBusSigHandler<DBus.NameAcquired>

{
public void handle(DBus.NameAcquired sig)

{

Figure 9: A Signal Handler

7 D-Bus Types

D-Bus supports a number of types in its messages, some which Java supports natively,
and some which it doesn’t. This library provides a way of modelling the extra D-Bus
Types in Java. The full list of types and what D-Bus type they map to is in table 1.

7.1 Basic Types

All of Java’s basic types are supported as parameters and return types to methods, and
as parameters to signals. These can be used in either their primitive or wrapper types.
7.1.1 Unsigned Types

D-Bus, like C and similar languages, has a notion of unsigned numeric types. The library
supplies UInt16'4, UInt32 and UInt64 classes to represent these new basic types.

7.2 Strings

D-Bus also supports sending Strings. When mentioned below, Strings count as a basic
type.

7.2.1 String Comparisons

There may be some problems with comparing strings received over D-Bus with strings
generated locally when using the String.equals method. This is due to how the Strings are
generated from a UTFEFS encoding. The recommended way to compare strings which have

Yhttp://dbus. freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/UInt16.html

10

http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/UInt16.html

been sent over D-Bus is with the java.text.Collator class. Figure 10 demonstrates its
use.

String rname = remote.getName();
Collator col = Collator.getInstance();
col.setDecomposition(Collator.FULL_DECOMPOSITION) ;
col.setStrength(Collator.PRIMARY) ;
if (0 !'= col.compare("Name", rname))

fail("getName return value incorrect");

Figure 10: Comparing strings with java.text.Collator.

7.3 Arrays

You can send arrays of any valid D-Bus Type over D-Bus. These can either be declared
in Java as arrays (e.g. Integer[] or int[]) or as Lists (e.g. List<String>). All lists
must be parameterised with their type in the source (reflection on this is used by the
library to determine their type). Also note that arrays cannot be used as part of more
complex type, only Lists (for example List<List<String>>).

7.4 Maps

D-Bus supports a dictionary type analogous to the Java Map type. This has the additional
restriction that only basic types can be used as the key (including String). Any valid
D-Bus type can be the value. As with lists, maps must be fully parameterised. (e.g.
Map<Integer, String>).

7.5 Variants

D-Bus has support for a Variant type. This is similar to declaring that a method takes
a parameter of type Object, in that a Variant may contain any other type. Variants can
either be declared using the Variant!® class, or as a Type Variable. In the latter case
the value is automatically unwrapped and passed to the function. Variants in compound
types (Arrays, Maps, etc) must be declared using the Variant class with the full type
passed to the Variant constructor and manually unwrapped.

Both these methods use variants:

public void display(Variant v);
public <T> int hash(T v);

7.6 Structs

D-Bus has a struct type, which is a collection of other types. Java does not have an
analogue of this other than fields in classes, and due to the limitation of Java reflection

5http://dbus. freedesktop.org/doc/dbus- java/api/org/freedesktop/dbus/Variant.html

11

http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/Variant.html

this is not sufficient. The library declares a Struct!® class which can be used to create

structs. To define a struct you extend the Struct class and define fields for each member
of the struct. These fields then need to be annotated in the order which they appear
in the struct (class fields do not have a defined order). You must also define a single
constructor which takes the contents of he struct in order. This is best demonstrated by
an example. Figure 11 shows a Struct definition, and figure 12 shows this being used as
a parameter to a method.

package org.freedesktop.dbus.test;

import org.freedesktop.dbus.DBusException;
import org.freedesktop.dbus.Position;
import org.freedesktop.dbus.Struct;

public final class TestStruct extends Struct
{

@Position(0)

public final String a;

@Position(1)

public final int b;

@Position(2)

public final String c;

public Struct3(String a, int b, String c)

{

this.a a;
this.b b;
this.c

C;

Figure 11: A Struct with three elements
public void do(TestStruct data);

Figure 12: A struct as a parameter to a method

Section 10 describes how these can be automatically generated from D-Bus introspec-
tion data.

7.7 Objects

You can pass references to exportable objects round using their object paths. To do this
in Java you declare a type of DBusInterface. When the library receive- an object path

http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/Struct.html

12

http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/Struct.html

it will automatically convert it into the object you are exporting with that object path.
You can pass remote objects back to their processes in a similar fashion.

Using a parameter of type DBusInterface can cause the automatic creation of a
proxy object using introspection. If the remote app does not support introspection, or
the object does not exist at the time you receive the message then this will fail. In
that case the parameter can be declared to be of type Path. In this case no automatic
creation will be performed and you can get the path as a string with either the getPath
or toString methods on the Path object.

7.8 Multiple Return Values

D-Bus also allows functions to return multiple values, a concept not supported by Java.
This has been solved in a fashion similar to the struct, using a Tuple!” class. Tuples are
defined as generic tuples which can be parameterised for different types and just need to
be defined of the appropriate length. This can be seen in figure 13 and a call in figure 14.
Again, these can be automatically generated from introspection data.

import org.freedesktop.dbus.Tuple;

public final class TestTuple<A, B, C> extends Tuple
{

public final A a;

public final B b;

public final C c;

public TestTuple(A a, B b, C c)

{

this.a a;
this.b b;
this.c c;

Figure 13: A 3-tuple
public ThreeTuple<String, Integer, Boolean> status(int item);

Figure 14: A Tuple being returned from a method

7.9 Full list of types
Table 1 contains a full list of all the Java types and their corresponding D-Bus types.

"http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/Tuple.html

13

http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/Tuple.html

Java Type D-Bus Type

Byte DBUS_TYPE_ BYTE

byte DBUS_-TYPE_BYTE
Boolean DBUS_TYPE_BOOLEAN
boolean DBUS_TYPE_BOOLEAN
Short DBUS_TYPE_INT16

short DBUS_TYPE_INT16
Ulnt16 DBUS_TYPE_UINT16

int DBUS_TYPE_INT32
Integer DBUS_TYPE_INT32
Ulnt32 DBUS_TYPE_UINT32

long DBUS_TYPE_INT64

Long DBUS_TYPE_INT64
Ulnt64 DBUS_TYPE_UINT64
double DBUS_TYPE_DOUBLE
Double DBUS_TYPE_DOUBLE
String DBUS_TYPE_STRING
Path DBUS_TYPE_OBJECT_PATH
<T> DBUS_TYPE_VARIANT
Variant DBUS_TYPE_VARIANT

? extends Struct DBUS_TYPE_STRUCT

7] DBUS_TYPE_ARRAY

? extends List DBUS_TYPE_ARRAY

? extends Map DBUS_TYPE_DICT

? extends DBusInterface | DBUS_TYPE_OBJECT_PATH
Type| | DBUS_TYPE_SIGNATURE

Table 1: Mapping between Java types and D-Bus types

14

7.9.1 float

Currently the D-Bus reference implementation does not support a native single-precision
floating point type. Along with the C# implementation of the protocol, the Java im-
plementation supports this extension to the protocol. By default, however, the library
operates in compatibility mode and converts all floats to the double type. To disable
compatibility mode export the environment variable DBUS_JAVA FLOATS=true.

8 Annotations

You can annotate your D-Bus methods as in figure 15 to provide hints to other users of
your API. Common annotations are listed in table 2.

package org.freedesktop;
import org.freedesktop.dbus.UInt32;
import org.freedesktop.dbus.DBusInterface;

Qorg.freedesktop.DBus.Description("Some Methods");

public interface DBus extends DBusInterface

{
Qorg.freedesktop.DBus.Description("Check if the name has an owner")
public boolean NameHasOwner (String name);
Qorg.freedesktop.DBus.Description("Request a name")
Qorg.freedesktop.DBus.Deprecated()
public UInt32 RequestName(String name, UInt32 flags);

Figure 15: An annotated method

Name Meaning

org.freedesktop.DBus.Description Provide a short 1-line description

of the method or interface.
org.freedesktop.DBus.Deprecated This method or interface is Deprecated.
org.freedesktop.DBus.Method.NoReply | This method may be called and returned
without waiting for a reply.
org.freedesktop.DBus.Method.Error This method may throw the listed Exception
in addition to the standard ones.

Table 2: Common Annotations

9 DBusSerializable

Some people may want to be able to pass their own objects over D-Bus. Obviously only
raw D-Bus types can be sent on the message bus itself, but the Java implementation

15

allows the creation of serializable objects which can be passed to D-Bus functions and
will be converted to/from D-Bus types by the library.

To create such a class you must implement the DBusSerializable!® class and provide
two methods and a zero-argument constructor. The first method has the signature public
Object

serialize() throws DBusException and the second must be called deserialize, re-
turn null and take as it’s arguments exactly all the dbus types that are being serialized to
in order and with parameterization. The serialize method should return the class proper-
ties you wish to serialize, correctly formatted for the wire (DBusConnection.convertParameters ()
can help with this), in order in an Object array.
An example of a serializable class can be seen in figure 16.

10 Createlnterface

D-Bus provides a method to get introspection data on a remote object, which describes
the interfaces, methods and signals it provides. This introspection data is in XML for-
mat'®. The library automatically provides XML introspection data on all objects which
are exported by it. Introspection data can be used to create Java interface definitions
automatically.

The CreateInterface®’ class will automatically create Java source files from an XML
file containing the introspection data, or by querying the remote object over D-Bus.
Createlnterface can be called from Java code, or can be run as a stand alone program.

The syntax for the Createlnterface program is

CreateInterface [--system] [--session] [--create-files]
<bus name> <object>
CreateInterface [--create-files] <introspection-file.xml>

The Java source code interfaces will be written to the standard ouput. If the -—create-files
option is specified the correct files in the correct directory structure will be created.

10.1 Nested Interfaces

In some cases there are nested interfaces. In this case Createlnterface will not correctly

create the Java equivalent. This is because Java cannot have both a class and a package

with the same name. The solution to this is to create nested classes in the same file.
An example would be the Hal interface:

<interface name="org.freedesktop.Hal.Device">

8http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/
DBusSerializable.html

Yhttp://dbus.freedesktop.org/doc/dbus-specification.html#introspection-format

20http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/
CreateInterface.html

16

http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/DBusSerializable.html
http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/DBusSerializable.html
http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/CreateInterface.html
http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/CreateInterface.html

</interface>
<interface name="org.freedesktop.Hal.Device.Volume">

</interface>

When converted to Java you would just have one file org/freedesktop/Hal/Device. java
in the package org.freedesktop.Hal, which would contain one class and one nested
class:

public interface Device extends DBusInterface {
public interface Volume extends DBusInterface {
. methods in Volume ...

}

. methods in Device ...

11 Debugging

It is possible to enable debugging in the library. This will be a lot slower, but can print
a lot of useful information for debugging your program.

To enable a debug build compile with DEBUG=enable. This will then need to be
enabled at runtime by using the debug jar with debugging enabled (usually installed as
debug-enable.jar alongside the normal jar).

Running a program which uses this library will print some informative messages. More
verbose debug information can be got by supplying a custom debug configuration file.
This should be placed in the file debug. conf and has the format:

classname = LEVEL

Where classname is either the special word ALL or a full class name like org. freedesktop.dbus
and LEVEL is one of NONE, CRIT, ERR, WARN, INFO, DEBUG, VERBOSE, YES, ALL or TRUE. This
will set the debug level for a particular class. Any messages from that class at that level
or higher will be printed. Verbose debugging is extremely verbose.
In addition, setting the environment variable DBUS_JAVA_EXCEPTION_DEBUG will cause
all exceptions which are handled internally to have their stack trace printed when they
are handled. This will happen unless debugging has been disabled for that class.

12 Peer to Peer

It is possible to connect two applications together directly without using a bus. D-Bus
calls this a peer-to-peer connection.

The Java implementation provides an alternative to the DBusConnection class, the
DirectConnection?! class. This allows you to connect two applications together directly
without the need of a bus.

2lhttp://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/
DirectConnection.html

17

http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/DirectConnection.html
http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/DirectConnection.html

When using a DirectConnection rather than a DBusConnection most operations are
the same. The only things which differ are how you connect and the operations which
depend on a bus. Since peer connections are only one-to-one there is no destination or
source address to messages. There is also no org.freedesktop.DBus service running on
the bus.

12.1 Connecting to another application

To connect with a peer connection one of the two applications must be listening on the
socket and the other connecting. Both of these use the same method to instantiate the
DirectConnection but with different addresses. To listen rather than connect you add
the “listen=true” parameter to the address. Listening and connecting can be seen in
figures 17 and 18 respectively. Listening will block at creating the connection until the
other application has connected.

DirectConnection also provides a createDynamicSession method which generates
a random abstract unix socket address to use.

12.2 Getting Remote Objects

Getting a remote object is essentially the same as with a bus connection, except that you
do not have to specify a bus name, only an object path. There is also no getPeerRemoteObject
method, since there can only be one peer on this connection.

The rest of the API is the same for peer connections as bus connections, ommiting
any bus addresses.

13 Low-level API

In very rare circumstances it may be neccessary to deal directly with messages on the bus,
rather than with objects and method calls. This implementation gives the programmer
access to this low-level API but its use is strongly recommended against.

To use the low-level API you use a different set of classes than with the normal API.

13.1 Transport

The Transport?? class is used to connect to the underlying transport with a bus address

and to send and receive messages.

You connect by either creating a Transport object with the bus address as the pa-
rameter, or by calling connect with the address later. Addresses are represented using
the BusAddress class.

Messages can be read by calling transport.min.readMessage () and written by using
the transport.mout.writeMessage (m) methods.

22nttp://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/Transport.html

18

http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/Transport.html

13.2 Message

Message® is the superclass of all the classes representing a message. To send a message
you need to create a subclass of this object. Possible message types are: MethodCall,
MethodReturn, Error and DBusSignal. Constructors for these vary, but they are basi-
cally similar to the MethodCall class.

All the constructors have variadic parameter lists with the last of the parameters
being the signature of the message body and the parameters which make up the body.
If the message has an empty body then the last parameter must be null. Reading and
writing messages is not thread safe.

Messages can be read either in blocking or non-blocking mode. When reading a
message in non-blocking mode, if a full message has not yet been read from the transport
the method will return null. Messages are instantiated as the correct message type, so
instanceof will work on the returned object. Blocking mode can be enabled with an
extra parameter to the Transport constructor.

Figure 20 shows how to connect to a bus, send the (required) initial ‘Hello’ message
and call a method with two parameters.

14 Examples

As an example here are a complete set of interfaces for the bluemon?* daemon, which
communicates over D-Bus. These interfaces were all created by querying introspection
data over the bus.

23http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/Message.html
Zhttp:/ /www.matthew.ath.cx/projects/bluemon

19

http://dbus.freedesktop.org/doc/dbus-java/api/org/freedesktop/dbus/Message.html

15 Credits

This document and the Java API were written by and are copyright to Matthew Johnson.
Much help and advice was provided by the members of the #dbus irc channel. Comments,
corrections and patches can be sent to dbus-java@matthew.ath.cx.

20

import java.lang.reflect.Type;

import java.util.List;
import java.util.Vector;

import org.freedesktop.dbus.DBusConnection;
import org.freedesktop.dbus.DBusSerializable;

public class TestSerializable implements DBusSerializable
{
private int a;
private String b;
private Vector<Integer> c;
public TestSerializable(int a, String b, Vector<Integer> c)

{
this.a = a;
this.b = b.toString();
this.c = c;

}

public TestSerializable() {}
public void deserialize(int a, String b, List<Integer> c)

{

this.a = a;

this.b = b;

this.c = new Vector<Integer>(c);
}
public Object[] serialize()
{

return new Object[] { a, b, c };
}

public int getInt() { return a; }

public String getString() { return b; }

public Vector<Integer> getVector() { return c; }
public String toString()

{

return "TestSerializable{"+a+",6 "+b+",6 "+c+"}";

Figure 16: A serializable class

DirectConnection dc = new DirectConnection("unix:path=/tmp/dbus-ABCXYZ,listen=true");

Figure 17: Listening for a peer connection

21

DirectConnection dc = new DirectConnection("unix:path=/tmp/dbus-ABCXYZ");

Figure 18: Connecting to a peer connection

RemoteInterface remote = dc.getRemoteObject("/Path");
remote.doStuff () ;

Figure 19: Getting a remote object on a peer connection

BusAddress address = new BusAddress(
System.getenv ("DBUS_SESSION_BUS_ADDRESS")) ;
Transport conn = new Transport(address, true);

Message m = new MethodCall("org.freedesktop.DBus", "/org/freedesktop/DBus",
"org.freedesktop. DBus", "Hello", (byte) 0, null);
conn.mout.writeMessage (m) ;

m = conn.min.readMessage();
System.out.println("Response to Hello is: "+m);

m = new MethodCall("org.freedesktop.DBus", "/org/freedesktop/DBus",
"org.freedesktop.DBus", "RequestName", (byte) O,
"su", "org.testname", 0);

conn.mout.writeMessage (m) ;

conn.disconnect();

Figure 20: Low-level usage

package cx.ath.matthew.bluemon;

import org.freedesktop.dbus.DBusInterface;
import org.freedesktop.dbus.UInt32;

public interface Bluemon extends DBusInterface

{
public Triplet<String, Boolean, UInt32>
Status(String address);

}

Figure 21: cx/ath/matthew /bluemon/Bluemon.java

22

package cx.ath.matthew.bluemon;
import org.freedesktop.dbus.DBusInterface;
import org.freedesktop.dbus.DBusSignal;
import org.freedesktop.dbus.exceptions.DBusException;
public interface ProximitySignal extends DBusInterface
{
public static class Connect extends DBusSignal
{
public final String address;
public Connect(String path, String address)
throws DBusException
{
super (path, address);
this.address = address;

+
public static class Disconnect extends DBusSignal
{
public final String address;
public Disconnect(String path, String address)
throws DBusException
{
super (path, address);
this.address = address;

Figure 22: cx/ath/matthew/bluemon/ProximitySignal.java

23

package cx.ath.matthew.bluemon;
import org.freedesktop.dbus.Tuple;
/** Just a typed container class */
public final class Triplet <A,B,C> extends Tuple
{
public final A a;
public final B b;
public final C c;
public Triplet(A a, B b, C c)

{
super(a, b, c);
this.a = a;
this.b = b;
this.c = c;

}

Figure 23: cx/ath/matthew/bluemon/Triplet.java

24

package cx.ath.matthew.bluemon;

import org.freedesktop.dbus.DBusConnection;

import org.freedesktop.dbus.DBusSigHandler;

import org.freedesktop.dbus.DBusSignal;

import org.freedesktop.dbus.UInt32;

import org.freedesktop.dbus.exceptions.DBusException;

public class Query {
public static void main(String[] args) {
String btid;
Triplet<String, Boolean, UInt32> rv = null;

if (0 == args.length) btid = "";
else btid = args[0];

DBusConnection conn = null;
try {
conn = DBusConnection.getConnection(DBusConnection.SYSTEM) ;
} catch (DBusException De) {
System.exit(1);
+
Bluemon b = (Bluemon) conn.getRemoteObject (
"cx.ath.matthew.bluemon.server",
"/cx/ath/matthew/bluemon/Bluemon", Bluemon.class);
try {
rv = b.Status(btid);
} catch (RuntimeException Re) {
System.exit(1);
}
String address = rv.a;
boolean status rv.b;
int level = rv.c.intValue();

if (status)
System.out.println("Device "+address+
" connected with level "+level);
else
System.out.println("Device "+address+" not connected");
conn.disconnect();

Figure 24: cx/ath/matthew/bluemon/Query.java

25

/* cx/ath/matthew/bluemon/Client.java */
package cx.ath.matthew.bluemon;

import org.freedesktop.dbus.DBusConnection;

import org.freedesktop.dbus.DBusSigHandler;

import org.freedesktop.dbus.DBusSignal;

import org.freedesktop.dbus.exceptions.DBusException;

public class Client implements DBusSigHandler

{
public void handle(DBusSignal s)
{
if (s instanceof ProximitySignal.Connect)
System.out.println("Got a connect for "
+((ProximitySignal.Connect) s).address);
else if (s instanceof ProximitySignal.Disconnect)
System.out.println("Got a disconnect for "
+((ProximitySignal.Disconnect) s).address);
}
public static void main(String[] args)
{
System.out.println("Creating Connection");
DBusConnection conn = null;
try {
conn = DBusConnection
.getConnection(DBusConnection.SYSTEM) ;
} catch (DBusException DBe) {
System.out.println("Could not connect to bus");
System.exit(1);
+
try {
conn.addSigHandler (ProximitySignal.Connect.class,
new Client());
conn.addSigHandler (ProximitySignal.Disconnect.class,
new Client());
} catch (DBusException DBe) {
conn.disconnect();
System.exit(1);
+
+
}

Figure 25: cx/ath/matthew/bluemon/Client.java

26

	Introduction
	Protocol Implementation
	Dependencies
	D-Bus Terminology
	Bus Names
	Interfaces
	Object Paths
	Member Names
	Errors

	DBusConnection
	Asynchronous Calls

	DBusInterface
	Interface name overriding

	DBusSignal
	DBusExecutionException
	DBusSigHandler
	D-Bus Types
	Basic Types
	Unsigned Types

	Strings
	String Comparisons

	Arrays
	Maps
	Variants
	Structs
	Objects
	Multiple Return Values
	Full list of types
	float

	Annotations
	DBusSerializable
	CreateInterface
	Nested Interfaces

	Debugging
	Peer to Peer
	Connecting to another application
	Getting Remote Objects

	Low-level API
	Transport
	Message

	Examples
	Credits

